Emergency Board-Up a Tarping Serving Miller Place Historic District
Emergency Board-Up a Tarping Serving Miller Place Historic District
When disaster strikes, whether its a fierce storm or an unexpected accident, the need for emergency board-up and tarping services in the Miller Place Historic District becomes crucial. Climate Changes Role in Water Damage . Its not something anyone plans for, but when the windows shatter or the roof takes a hit, quick action is essential to prevent further damage. After all, who wants to see such a historic area suffer more than it needs to?
Imagine waking up in the middle of the night to the sound of howling winds and debris hitting your house. Youre definitely not going to wait until morning to address those broken windows or that gaping hole in the roof. Thats where emergency board-up and tarping services come into play. They (the professionals) arrive swiftly, armed with the tools and materials needed to secure your property against the elements.
Now, lets not pretend these services are only about aesthetics or preserving the charm of the historic district. Oh no, theyre about safety too! An unsecured property invites not just the weather (rain, wind, snow) but also potential intruders. Its like an open invitation for trouble, and who wants that? Certainly not the residents of Miller Place!
The process of boarding up involves covering windows and doors with sturdy materials like plywood to protect the interior from further harm. Tarping, on the other hand, involves placing heavy-duty tarps over damaged roofs to keep the rain out. Its not an easy task-especially in the dead of night-but its necessary. And lets face it, nobodys saying its glamorous work, but its important.
Whats interesting is how these services also help in preserving the historical integrity of the area. The Miller Place Historic District, with its charming old-world architecture, has a unique character thats worth protecting. Emergency services ensure that even in the face of calamity, the districts charm isnt lost. Its about maintaining the legacy, not just the buildings!
Many might think, "Oh, I can handle this on my own," but the truth is, not everyone has the skills or materials needed to do it properly. And hey, no ones saying you cant try, but wouldnt you rather have experts who know what theyre doing? Its not just about slapping a board over a window; its about ensuring its done right.
In conclusion, emergency board-up and tarping services in the Miller Place Historic District are more than just a quick fix. Theyre about safeguarding the safety, security, and historical value of the community. When disaster strikes, its comforting to know that these services are just a call away. So, while we hope you never need them, its good to know theyre there!
Natural types of floods include river flooding, groundwater flooding coastal flooding and urban flooding sometimes known as flash flooding. Tidal flooding may include elements of both river and coastal flooding processes in estuary areas. There is also the intentional flooding of land that would otherwise remain dry. This may take place for agricultural, military, or river-management purposes. For example, agricultural flooding may occur in preparing paddy fields for the growing of semi-aquatic rice in many countries.
Flooding may occur as an overflow of water from water bodies, such as a river, lake, sea or ocean. In these cases, the water overtops or breaks levees, resulting in some of that water escaping its usual boundaries.[6] Flooding may also occur due to an accumulation of rainwater on saturated ground. This is called an areal flood. The size of a lake or other body of water naturally varies with seasonal changes in precipitation and snow melt. Those changes in size are however not considered a flood unless they flood property or drowndomestic animals.
Floods can also occur in rivers when the flow rate exceeds the capacity of the river channel, particularly at bends or meanders in the waterway. Floods often cause damage to homes and businesses if these buildings are in the natural flood plains of rivers. People could avoid riverine flood damage by moving away from rivers. However, people in many countries have traditionally lived and worked by rivers because the land is usually flat and fertile. Also, the rivers provide easy travel and access to commerce and industry.
Flooding can damage property and also lead to secondary impacts. These include in the short term an increased spread of waterborne diseases and vector-bourne diseases, for example those diseases transmitted by mosquitos. Flooding can also lead to long-term displacement of residents.[7] Floods are an area of study of hydrology and hydraulic engineering.
A large amount of the world's population lives in close proximity to major coastlines,[8] while many major cities and agricultural areas are located near floodplains.[9] There is significant risk for increased coastal and fluvial flooding due to changing climatic conditions.[10]
Floods can happen on flat or low-lying areas when water is supplied by rainfall or snowmelt more rapidly than it can either infiltrate or run off. The excess accumulates in place, sometimes to hazardous depths. Surface soil can become saturated, which effectively stops infiltration, where the water table is shallow, such as a floodplain, or from intense rain from one or a series of storms. Infiltration also is slow to negligible through frozen ground, rock, concrete, paving, or roofs. Areal flooding begins in flat areas like floodplains and in local depressions not connected to a stream channel, because the velocity of overland flow depends on the surface slope. Endorheic basins may experience areal flooding during periods when precipitation exceeds evaporation.[11]
Slow-rising floods most commonly occur in large rivers with large catchment areas. The increase in flow may be the result of sustained rainfall, rapid snow melt, monsoons, or tropical cyclones. However, large rivers may have rapid flooding events in areas with dry climates, since they may have large basins but small river channels, and rainfall can be very intense in smaller areas of those basins.
In extremely flat areas, such as the Red River Valley of the North in Minnesota, North Dakota, and Manitoba, a type of hybrid river/areal flooding can occur, known locally as "overland flooding". This is different from "overland flow" defined as "surface runoff". The Red River Valley is a former glacial lakebed, created by Lake Agassiz, and over a length of 550 mi (890 km), the river course drops only 236 ft (72 m), for an average slope of about 5 inches per mile (or 8.2 cm per kilometer).[12] In this very large area, spring snowmelt happens at different rates in different places, and if winter snowfall was heavy, a fast snowmelt can push water out of the banks of a tributary river so that it moves overland, to a point further downstream in the river or completely to another streambed. Overland flooding can be devastating because it is unpredictable, it can occur very suddenly with surprising speed, and in such flat land it can run for miles. It is these qualities that set it apart from simple "overland flow".
Rapid flooding events, including flash floods, more often occur on smaller rivers, rivers with steep valleys, rivers that flow for much of their length over impermeable terrain, or normally-dry channels. The cause may be localized convective precipitation (intense thunderstorms) or sudden release from an upstream impoundment created behind a dam, landslide, or glacier. In one instance, a flash flood killed eight people enjoying the water on a Sunday afternoon at a popular waterfall in a narrow canyon.[citation needed] Without any observed rainfall, the flow rate increased from about 50 to 1,500 cubic feet per second (1.4 to 42 m3/s) in just one minute.[13] Two larger floods occurred at the same site within a week, but no one was at the waterfall on those days. The deadly flood resulted from a thunderstorm over part of the drainage basin, where steep, bare rock slopes are common and the thin soil was already saturated.
Flash floods are the most common flood type in normally-dry channels in arid zones, known as arroyos in the southwest United States and many other names elsewhere. In that setting, the first flood water to arrive is depleted as it wets the sandy stream bed. The leading edge of the flood thus advances more slowly than later and higher flows. As a result, the rising limb of the hydrograph becomes ever quicker as the flood moves downstream, until the flow rate is so great that the depletion by wetting soil becomes insignificant.
Coastal areas may be flooded by storm surges combining with high tides and large wave events at sea, resulting in waves over-topping flood defenses or in severe cases by tsunami or tropical cyclones. A storm surge, from either a tropical cyclone or an extratropical cyclone, falls within this category. A storm surge is "an additional rise of water generated by a storm, over and above the predicted astronomical tides".[14] Due to the effects of climate change (e.g. sea level rise and an increase in extreme weather events) and an increase in the population living in coastal areas, the damage caused by coastal flood events has intensified and more people are being affected.[15]
Flooding in estuaries is commonly caused by a combination of storm surges caused by winds and low barometric pressure and large waves meeting high upstream river flows.
Flooding in Porto Alegre of the Lagoa dos Patos in Brazil during May 2024Urban flooding is the inundation of land or property in cities or other built environment, caused by rainfall or coastal storm surges overwhelming the capacity of drainage systems, such as storm sewers. Urban flooding can occur regardless of whether or not affected communities are located within designated floodplains or near any body of water.[16] It is triggered for example by an overflow of rivers and lakes, flash flooding or snowmelt. During the flood, stormwater or water released from damaged water mains may accumulate on property and in public rights-of-way. It can seep through building walls and floors, or backup into buildings through sewer pipes, cellars, toilets and sinks. There are several types of urban flooding, each with a different cause. City planners distinguish pluvial flooding (flooding caused by heavy rain), fluvial flooding (caused by a nearby river overflowing its banks), or coastal flooding (often caused by storm surges). Urban flooding is a hazard to both the population and infrastructure. Some well known disaster events include the inundations of Nîmes (France) in 1998 and Vaison-la-Romaine (France) in 1992, the flooding of New Orleans (United States) in 2005, and the flooding in Rockhampton, Bundaberg, Brisbane during the 2010–2011 Queensland floods in Australia, the 2022 eastern Australia floods, and more recently the 2024 Rio Grande do Sul floods in Brazil.
The intentional flooding of land that would otherwise remain dry may take place for agricultural, military or river-management purposes. This is a form of hydraulic engineering. Agricultural flooding may occur in preparing paddy fields for the growing of semi-aquatic rice in many countries.
Flooding for river management may occur in the form of diverting flood waters in a river at flood stage upstream from areas that are considered more valuable than the areas that are sacrificed in this way. This may be done ad hoc,[17] or permanently, as in the so-called overlaten (literally "let-overs"), an intentionally lowered segment in Dutch riparian levees, like the Beerse Overlaat in the left levee of the Meuse between the villages of Gassel and Linden, North Brabant.
Military inundation creates an obstacle in the field that is intended to impede the movement of the enemy.[18] This may be done both for offensive and defensive purposes. Furthermore, in so far as the methods used are a form of hydraulic engineering, it may be useful to differentiate between controlled inundations and uncontrolled ones. Examples for controlled inundations include those in the Netherlands under the Dutch Republic and its successor states in that area[19][20] and exemplified in the two Hollandic Water Lines, the Stelling van Amsterdam, the Frisian Water Line, the IJssel Line, the Peel-Raam Line, and the Grebbe line in that country.
To count as controlled, a military inundation has to take the interests of the civilian population into account, by allowing them a timely evacuation, by making the inundation reversible, and by making an attempt to minimize the adverse ecological impact of the inundation. That impact may also be adverse in a hydrogeological sense if the inundation lasts a long time.[21]
Floods are caused by many factors or a combination of any of these generally prolonged heavy rainfall (locally concentrated or throughout a catchment area), highly accelerated snowmelt, severe winds over water, unusual high tides, tsunamis, or failure of dams, levees, retention ponds, or other structures that retained the water. Flooding can be exacerbated by increased amounts of impervious surface or by other natural hazards such as wildfires, which reduce the supply of vegetation that can absorb rainfall.
During times of rain, some of the water is retained in ponds or soil, some is absorbed by grass and vegetation, some evaporates, and the rest travels over the land as surface runoff. Floods occur when ponds, lakes, riverbeds, soil, and vegetation cannot absorb all the water.
This has been exacerbated by human activities such as draining wetlands that naturally store large amounts of water and building paved surfaces that do not absorb any water.[24] Water then runs off the land in quantities that cannot be carried within stream channels or retained in natural ponds, lakes, and human-made reservoirs. About 30 percent of all precipitation becomes runoff[25] and that amount might be increased by water from melting snow.
River flooding is often caused by heavy rain, sometimes increased by melting snow. A flood that rises rapidly, with little or no warning, is called a flash flood. Flash floods usually result from intense rainfall over a relatively small area, or if the area was already saturated from previous precipitation.
The amount, location, and timing of water reaching a drainage channel from natural precipitation and controlled or uncontrolled reservoir releases determines the flow at downstream locations. Some precipitation evaporates, some slowly percolates through soil, some may be temporarily sequestered as snow or ice, and some may produce rapid runoff from surfaces including rock, pavement, roofs, and saturated or frozen ground. The fraction of incident precipitation promptly reaching a drainage channel has been observed from nil for light rain on dry, level ground to as high as 170 percent for warm rain on accumulated snow.[26]
Most precipitation records are based on a measured depth of water received within a fixed time interval. Frequency of a precipitation threshold of interest may be determined from the number of measurements exceeding that threshold value within the total time period for which observations are available. Individual data points are converted to intensity by dividing each measured depth by the period of time between observations. This intensity will be less than the actual peak intensity if the duration of the rainfall event was less than the fixed time interval for which measurements are reported. Convective precipitation events (thunderstorms) tend to produce shorter duration storm events than orographic precipitation. Duration, intensity, and frequency of rainfall events are important to flood prediction. Short duration precipitation is more significant to flooding within small drainage basins.[27]
The most important upslope factor in determining flood magnitude is the land area of the watershed upstream of the area of interest. Rainfall intensity is the second most important factor for watersheds of less than approximately 30 square miles or 80 square kilometres. The main channel slope is the second most important factor for larger watersheds. Channel slope and rainfall intensity become the third most important factors for small and large watersheds, respectively.[28]
Time of Concentration is the time required for runoff from the most distant point of the upstream drainage area to reach the point of the drainage channel controlling flooding of the area of interest. The time of concentration defines the critical duration of peak rainfall for the area of interest.[29] The critical duration of intense rainfall might be only a few minutes for roof and parking lot drainage structures, while cumulative rainfall over several days would be critical for river basins.
Water flowing downhill ultimately encounters downstream conditions slowing movement. The final limitation in coastal flooding lands is often the ocean or some coastal flooding bars which form natural lakes. In flooding low lands, elevation changes such as tidal fluctuations are significant determinants of coastal and estuarine flooding. Less predictable events like tsunamis and storm surges may also cause elevation changes in large bodies of water. Elevation of flowing water is controlled by the geometry of the flow channel and, especially, by depth of channel, speed of flow and amount of sediments in it[28] Flow channel restrictions like bridges and canyons tend to control water elevation above the restriction. The actual control point for any given reach of the drainage may change with changing water elevation, so a closer point may control for lower water levels until a more distant point controls at higher water levels.
Effective flood channel geometry may be changed by growth of vegetation, accumulation of ice or debris, or construction of bridges, buildings, or levees within the flood channel.
Periodic floods occur on many rivers, forming a surrounding region known as the flood plain. Even when rainfall is relatively light, the shorelines of lakes and bays can be flooded by severe winds—such as during hurricanes—that blow water into the shore areas.
High tide flooding is increasing due to sea level rise, land subsidence, and the loss of natural barriers.[30]
Long-term sea level rise occurs in addition to intermittent tidal flooding. NOAA predicts different levels of sea level rise for coastlines within a single country.[31]
Due to an increase in heavy rainfall events, floods are likely to become more severe when they do occur.[32]: 1155 The interactions between rainfall and flooding are complex. There are some regions in which flooding is expected to become rarer. This depends on several factors. These include changes in rain and snowmelt, but also soil moisture.[32]: 1156 Climate change leaves soils drier in some areas, so they may absorb rainfall more quickly. This leads to less flooding. Dry soils can also become harder. In this case heavy rainfall runs off into rivers and lakes. This increases risks of flooding.[32]: 1155
Extreme flood events often result from coincidence such as unusually intense, warm rainfall melting heavy snow pack, producing channel obstructions from floating ice, and releasing small impoundments like beaver dams.[33] Coincident events may cause extensive flooding to be more frequent than anticipated from simplistic statistical prediction models considering only precipitation runoff flowing within unobstructed drainage channels.[34] Debris modification of channel geometry is common when heavy flows move uprooted woody vegetation and flood-damaged structures and vehicles, including boats and railway equipment. Recent field measurements during the 2010–11 Queensland floods showed that any criterion solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by velocity and water depth fluctuations.[35] These considerations ignore further the risks associated with large debris entrained by the flow motion.[36]
Flooded walnut orchards in Butte County after several atmospheric rivers hit California in early 2023
Floods can be a huge destructive power. When water flows, it has the ability to demolish all kinds of buildings and objects, such as bridges, structures, houses, trees, and cars. Economical, social and natural environmental damages are common factors that are impacted by flooding events and the impacts that flooding has on these areas can be catastrophic.[37]
There have been numerous flood incidents around the world which have caused devastating damage to infrastructure, the natural environment and human life.[37]
Floods can have devastating impacts to human societies. Flooding events worldwide are increasing in frequency and severity, leading to increasing costs to societies.[37]
The primary effects of flooding include loss of life and damage to buildings and other structures, including bridges, sewerage systems, roadways, and canals. The economic impacts caused by flooding can be severe.[9]
Every year flooding causes countries billions of dollars worth of damage that threatens the livelihood of individuals.[38] As a result, there is also significant socio-economic threats to vulnerable populations around the world from flooding.[38] For example, in Bangladesh in 2007, a flood was responsible for the destruction of more than one million houses. And yearly in the United States, floods cause over $7 billion in damage.[39]
Mud was deposited in this house by flooding in the 2018 Kerala floods in India. Flooding not only creates water damage, but can also deposit large amounts of sediment.
Flood waters typically inundate farm land, making the land unworkable and preventing crops from being planted or harvested, which can lead to shortages of food both for humans and farm animals. Entire harvests for a country can be lost in extreme flood circumstances. Some tree species may not survive prolonged flooding of their root systems.[40]
Flooding in areas where people live also has significant economic implications for affected neighborhoods. In the United States, industry experts estimate that wet basements can lower property values by 10–25 percent and are cited among the top reasons for not purchasing a home.[41] According to the U.S. Federal Emergency Management Agency (FEMA), almost 40 percent of small businesses never reopen their doors following a flooding disaster.[42] In the United States, insurance is available against flood damage to both homes and businesses.[43]
Economic hardship due to a temporary decline in tourism, rebuilding costs, or food shortages leading to price increases is a common after-effect of severe flooding. The impact on those affected may cause psychological damage to those affected, in particular where deaths, serious injuries and loss of property occur.
Injuries can lead to an excessive amount of morbidity when a flood occurs. Injuries do not just affect those who were directly in the flood: rescue teams and even people delivering supplies can sustain an injury. Injuries can occur before, during and after the flood.[44] During floods accidents occur with falling debris or any of the many fast moving objects in the water. After the flood rescue attempts are when large numbers injuries can occur.[44]
When floods hit, people can lose nearly all their crops, livestock, and food reserves and face starvation.[45]
Floods also frequently damage power transmission and sometimes power generation, which then has knock-on effects caused by the loss of power. This includes loss of drinking water treatment and water supply, which may result in loss of drinking water or severe water contamination. It may also cause the loss of sewage disposal facilities. Lack of clean water combined with human sewage in the flood waters raises the risk of waterborne diseases, which can include typhoid, giardia, cryptosporidium, cholera and many other diseases depending upon the location of the flood.[Merge this list with previous list]
Damage to roads and transport infrastructure may make it difficult to mobilize aid to those affected or to provide emergency health treatment.
Flooding can cause chronically wet houses, leading to the growth of indoor mold and resulting in adverse health effects, particularly respiratory symptoms.[46]Respiratory diseases are common after the disaster has occurred. This depends on the amount of water damage and mold that grows after an incident. Research suggests that there will be an increase of 30–50% in adverse respiratory health outcomes caused by dampness and mold exposure for those living in coastal and wetland areas. Fungal contamination in homes is associated with increased allergic rhinitis and asthma.[47]Vector-borne diseases also increase, due to the residual still water after the floods have settled. The diseases that are vector borne are malaria, dengue, West Nile, and yellow fever.[44] Floods may have a huge impact on victims' psychosocial integrity. People suffer from a wide variety of losses and stress. One of the most treated illnesses in long-term health problems are depression caused by the flood and all the tragedy that flows with one.[44]
Floods (in particular more frequent or smaller floods) can also bring many benefits, such as recharging ground water, making soil more fertile and increasing nutrients in some soils. For this reason, periodic flooding was essential to the well-being of ancient peoples along the Tigris-Euphrates Rivers, the Nile River, the Indus River, the Ganges and the Yellow River among others.
Flood waters provide much needed water resources in arid and semi-arid regions where precipitation can be very unevenly distributed throughout the year and kills pests in the farming land. Freshwater floods particularly play an important role in maintaining ecosystems in river corridors and are a key factor in maintaining floodplain biodiversity.[49] Flooding can spread nutrients to lakes and rivers, which can lead to increased biomass and improved fisheries for a few years.
For some fish species, an inundated floodplain may form a highly suitable location for spawning, with few predators and enhanced levels of nutrients or food.[50] Fish such as the weather fish use floods to reach new habitats. Bird populations may also profit from the boost in food production caused by flooding.[51]
The viability of hydropower, a renewable source of energy, is also higher in flood-prone regions.
Flood management or flood control are methods used to reduce or prevent the detrimental effects of flood waters. Flooding can be caused by a mix of both natural processes, such as extreme weather upstream, and human changes to waterbodies and runoff. Flood management methods can be either of the structural type (i.e. flood control) and of the non-structural type. Structural methods hold back floodwaters physically, while non-structural methods do not. Building hard infrastructure to prevent flooding, such as flood walls, is effective at managing flooding. However, it is best practice within landscape engineering to rely more on soft infrastructure and natural systems, such as marshes and flood plains, for handling the increase in water.
Flood management can include flood risk management, which focuses on measures to reduce risk, vulnerability and exposure to flood disasters and providing risk analysis through, for example, flood risk assessment.[52]Flood mitigation is a related but separate concept describing a broader set of strategies taken to reduce flood risk and potential impact while improving resilience against flood events.
As climate change has led to increased flood risk an intensity, flood management is an important part of climate change adaptation and climate resilience.[53][54] For example, to prevent or manage coastal flooding, coastal management practices have to handle natural processes like tides but also sea level rise due to climate change. The prevention and mitigation of flooding can be studied on three levels: on individual properties, small communities, and whole towns or cities.
In many countries around the world, waterways prone to floods are often carefully managed. Defenses such as detention basins, levees,[55]bunds, reservoirs, and weirs are used to prevent waterways from overflowing their banks. When these defenses fail, emergency measures such as sandbags or portable inflatable tubes are often used to try to stem flooding. Coastal flooding has been addressed in portions of Europe and the Americas with coastal defenses, such as sea walls, beach nourishment, and barrier islands.
In the riparian zone near rivers and streams, erosion control measures can be taken to try to slow down or reverse the natural forces that cause many waterways to meander over long periods of time. Flood controls, such as dams, can be built and maintained over time to try to reduce the occurrence and severity of floods as well. In the United States, the U.S. Army Corps of Engineers maintains a network of such flood control dams.
In areas prone to urban flooding, one solution is the repair and expansion of human-made sewer systems and stormwater infrastructure. Another strategy is to reduce impervious surfaces in streets, parking lots and buildings through natural drainage channels, porous paving, and wetlands (collectively known as green infrastructure or sustainable urban drainage systems (SUDS)). Areas identified as flood-prone can be converted into parks and playgrounds that can tolerate occasional flooding. Ordinances can be adopted to require developers to retain stormwater on site and require buildings to be elevated, protected by floodwalls and levees, or designed to withstand temporary inundation. Property owners can also invest in solutions themselves, such as re-landscaping their property to take the flow of water away from their building and installing rain barrels, sump pumps, and check valves.
Aftermath of flooding in Colorado, 2013Flood rescue in Nangarhar, Afghanistan in 2010Flash flooding caused by heavy rain falling in a short amount of time
In the United States, the National Weather Service gives out the advice "Turn Around, Don't Drown" for floods; that is, it recommends that people get out of the area of a flood, rather than trying to cross it. At the most basic level, the best defense against floods is to seek higher ground for high-value uses while balancing the foreseeable risks with the benefits of occupying flood hazard zones.[56]: 22–23 Critical community-safety facilities, such as hospitals, emergency-operations centers, and police, fire, and rescue services, should be built in areas least at risk of flooding. Structures, such as bridges, that must unavoidably be in flood hazard areas should be designed to withstand flooding. Areas most at risk for flooding could be put to valuable uses that could be abandoned temporarily as people retreat to safer areas when a flood is imminent.
Planning for flood safety involves many aspects of analysis and engineering, including:
observation of previous and present flood heights and inundated areas,
statistical, hydrologic, and hydraulic model analyses,
mapping inundated areas and flood heights for future flood scenarios,
engineering design and construction of structures to control or withstand flooding,
intermediate-term monitoring, forecasting, and emergency-response planning, and
short-term monitoring, warning, and response operations.
Each topic presents distinct yet related questions with varying scope and scale in time, space, and the people involved. Attempts to understand and manage the mechanisms at work in floodplains have been made for at least six millennia.[57][page needed]
In the United States, the Association of State Floodplain Managers works to promote education, policies, and activities that mitigate current and future losses, costs, and human suffering caused by flooding and to protect the natural and beneficial functions of floodplains – all without causing adverse impacts.[58] A portfolio of best practice examples for disaster mitigation in the United States is available from the Federal Emergency Management Agency.[59]
Clean-up activities following floods often pose hazards to workers and volunteers involved in the effort. Potential dangers include electrical hazards, carbon monoxide exposure, musculoskeletal hazards, heat or cold stress, motor vehicle-related dangers, fire, drowning, and exposure to hazardous materials. Because flooded disaster sites are unstable, clean-up workers might encounter sharp jagged debris, biological hazards in the flood water, exposed electrical lines, blood or other body fluids, and animal and human remains. In planning for and reacting to flood disasters, managers provide workers with hard hats, goggles, heavy work gloves, life jackets, and watertight boots with steel toes and insoles.[60]
A series of annual maximum flow rates in a stream reach can be analyzed statistically to estimate the 100-year flood and floods of other recurrence intervals there. Similar estimates from many sites in a hydrologically similar region can be related to measurable characteristics of each drainage basin to allow indirect estimation of flood recurrence intervals for stream reaches without sufficient data for direct analysis.
Physical process models of channel reaches are generally well understood and will calculate the depth and area of inundation for given channel conditions and a specified flow rate, such as for use in floodplain mapping and flood insurance. Conversely, given the observed inundation area of a recent flood and the channel conditions, a model can calculate the flow rate. Applied to various potential channel configurations and flow rates, a reach model can contribute to selecting an optimum design for a modified channel. Various reach models are available as of 2015, either 1D models (flood levels measured in the channel) or 2D models (variable flood depths measured across the extent of a floodplain). HEC-RAS,[61] the Hydraulic Engineering Center model, is among the most popular software, if only because it is available free of charge. Other models such as TUFLOW[62] combine 1D and 2D components to derive flood depths across both river channels and the entire floodplain.
Physical process models of complete drainage basins are even more complex. Although many processes are well understood at a point or for a small area, others are poorly understood at all scales, and process interactions under normal or extreme climatic conditions may be unknown. Basin models typically combine land-surface process components (to estimate how much rainfall or snowmelt reaches a channel) with a series of reach models. For example, a basin model can calculate the runoff hydrograph that might result from a 100-year storm, although the recurrence interval of a storm is rarely equal to that of the associated flood. Basin models are commonly used in flood forecasting and warning, as well as in analysis of the effects of land use change and climate change.
The Global Flood Monitoring System, "GFMS", a computer tool which maps flood conditions worldwide, is available online.[67] Users anywhere in the world can use GFMS to determine when floods may occur in their area. GFMS uses precipitation data from NASA's Earth observing satellites and the Global Precipitation Measurement satellite, "GPM". Rainfall data from GPM is combined with a land surface model that incorporates vegetation cover, soil type, and terrain to determine how much water is soaking into the ground, and how much water is flowing into streamflow.
Users can view statistics for rainfall, streamflow, water depth, and flooding every 3 hours, at each 12-kilometer gridpoint on a global map. Forecasts for these parameters are 5 days into the future. Users can zoom in to see inundation maps (areas estimated to be covered with water) in 1-kilometer resolution.[68]
Anticipating floods before they occur allows for precautions to be taken and people to be warned[69] so that they can be prepared in advance for flooding conditions. For example, farmers can remove animals from low-lying areas and utility services can put in place emergency provisions to re-route services if needed. Emergency services can also make provisions to have enough resources available ahead of time to respond to emergencies as they occur. People can evacuate areas to be flooded.
In order to make the most accurate flood forecasts for waterways, it is best to have a long time-series of historical data that relates stream flows to measured past rainfall events.[70] Coupling this historical information with real-time knowledge about volumetric capacity in catchment areas, such as spare capacity in reservoirs, ground-water levels, and the degree of saturation of area aquifers is also needed in order to make the most accurate flood forecasts.
Radar estimates of rainfall and general weather forecasting techniques are also important components of good flood forecasting. In areas where good quality data is available, the intensity and height of a flood can be predicted with fairly good accuracy and plenty of lead time. The output of a flood forecast is typically a maximum expected water level and the likely time of its arrival at key locations along a waterway,[66] and it also may allow for the computation of the likely statistical return period of a flood. In many developed countries, urban areas at risk of flooding are protected against a 100-year flood – that is a flood that has a probability of around 63% (i.e. 1 − 0.99100, or roughly 1 − 1/e) of occurring in any 100-year period of time.
According to the U.S. National Weather Service (NWS) Northeast River Forecast Center (RFC) in Taunton, Massachusetts, a rule of thumb for flood forecasting in urban areas is that it takes at least 1 inch (25 mm) of rainfall in around an hour's time in order to start significant ponding of water on impermeable surfaces. Many NWS RFCs routinely issue Flash Flood Guidance and Headwater Guidance, which indicate the general amount of rainfall that would need to fall in a short period of time in order to cause flash flooding or flooding on larger water basins.[71]
Flood risks can be defined as the risk that floods pose to individuals, property and the natural landscape based on specific hazards and vulnerability. The extent of flood risks can impact the types of mitigation strategies required and implemented.[72]
A large amount of the world's population lives in close proximity to major coastlines,[8] while many major cities and agricultural areas are located near floodplains.[9] There is significant risk for increased coastal and fluvial flooding due to changing climatic conditions.[10]
A flood myth or a deluge myth is a myth in which a great flood, usually sent by a deity or deities, destroys civilization, often in an act of divine retribution. Parallels are often drawn between the flood waters of these myths and the primeval cosmic ocean which appear in certain creation myths, as the flood waters are described as a measure for the cleansing of humanity, for example in preparation for rebirth. Most flood myths also contain a culture hero, who "represents the human craving for life".[73]
The word "flood" comes from the Old Englishflōd, a word common to Germanic languages (compare GermanFlut, Dutchvloed from the same root as is seen in flow, float; also compare with Latinfluctus, flumen), meaning "a flowing of water, tide, an overflowing of land by water, a deluge, Noah's Flood; mass of water, river, sea, wave".[74][75] The Old English word flōd comes from the Proto-Germanicfloduz (Old Frisianflod, Old Norsefloð, Middle Dutchvloet, Dutch vloed, German Flut, and Gothicflodus derives from floduz).[74]
^Babbitt, Harold E. & Doland, James J., Water Supply Engineering, McGraw-Hill Book Company, 1949
^Simon, Andrew L., Basic Hydraulics, John Wiley & Sons, 1981, ISBN0-471-07965-0
^ abSimon, Andrew L., Practical Hydraulics, John Wiley & Sons, 1981, ISBN0-471-05381-3
^Urquhart, Leonard Church, Civil Engineering Handbook, McGraw-Hill Book Company, 1959
^"What is high tide flooding?". National Oceanic and Atmospheric Administration's National Ocean Service. US Department of Commerce. Archived from the original on 16 October 2020. Retrieved 12 October 2020.
Interior of part of a damaged home in New Orleans after Hurricane KatrinaFamily photographs damaged by floodingA smaller and more minor water spot caused by rainwater leaking through a roof
Water damage describes various possible losses caused by water intruding where it will enable attack of a material or system by destructive processes such as rotting of wood, mold growth, bacteria growth, rusting of steel, swelling of composite woods, damage to laminated materials like plywood, short-circuiting of electrical devices, etc.
The damage may be very slow and minor such as water spots that could eventually mar a surface, or it may be instantaneous and catastrophic such as burst pipes and flooding. However fast it occurs, water damage is a major contributor to loss of property.
An insurance policy may or may not cover the costs associated with water damage and the process of water damage restoration. While a common cause of residential water damage is often the failure of a sump pump, many homeowner's insurance policies do not cover the associated costs without an addendum which adds to the monthly premium of the policy. Often the verbiage of this addendum is similar to "Sewer and Drain Coverage".
In the United States, those individuals who are affected by wide-scale flooding may have the ability to apply for government and FEMA grants through the Individual Assistance program.[1] On a larger level, businesses, cities, and communities can apply to the FEMA Public Assistance program for funds to assist after a large flood. For example, the city of Fond du Lac Wisconsin received $1.2 million FEMA grant after flooding in June 2008. The program allows the city to purchase the water damaged properties, demolish the structures, and turn the former land into public green space.[citation needed]
Water damage can originate by different sources such as a broken dishwasher hose, a washing machine overflow, a dishwasher leakage, broken/leaking pipes, flood waters, groundwater seepage, building envelope failures (leaking roof, windows, doors, siding, etc.) and clogged toilets. According to the Environmental Protection Agency, 13.7% of all water used in the home today can be attributed to plumbing leaks.[2] On average that is approximately 10,000 gallons of water per year wasted by leaks for each US home. A tiny, 1/8-inch crack in a pipe can release up to 250 gallons of water a day.[3] According to Claims Magazine in August 2000, broken water pipes ranked second to hurricanes in terms of both the number of homes damaged and the amount of claims (on average $50,000 per insurance claim[citation needed]) costs in the US.[4] Experts suggest that homeowners inspect and replace worn pipe fittings and hose connections to all household appliances that use water at least once a year. This includes washing machines, dishwashers, kitchen sinks, and bathroom lavatories, refrigerator icemakers, water softeners, and humidifiers. A few US companies offer whole-house leak protection systems utilizing flow-based technologies. A number of insurance companies offer policyholders reduced rates for installing a whole-house leak protection system.
As far as insurance coverage is concerned, damage caused by surface water intrusion to the dwelling is considered flood damage and is normally excluded from coverage under traditional homeowners' insurance. Surface water is water that enters the dwelling from the surface of the ground because of inundation or insufficient drainage and causes loss to the dwelling. Coverage for surface water intrusion[5] to the dwelling would usually require a separate flood insurance policy.
There are three basic categories of water damage, based on the level of contamination.
Category 1 Water - Refers to a source of water that does not pose a substantial threat to humans. Examples are broken water supply lines, tub or sink overflows or appliance malfunctions that involve water supply lines.
Category 2 Water - Refers to a source of water that contains a significant degree of chemical, biological or physical contaminants and causes discomfort or sickness when consumed or even exposed to. This type carries microorganisms and nutrients of micro-organisms. Examples are toilet bowls with urine (no feces), sump pump failures, seepage due to hydrostatic failure and water discharge from dishwashers or washing machines.
Category 3 Water is grossly unsanitary. This water contains unsanitary agents, harmful bacteria and fungi, causing severe discomfort or sickness. This category includes water sources from sewage, seawater, rising water from rivers or streams, storm surge, ground surface water or standing water.
Categories of water damage can deteriorate based on environmental conditions, including time and temperature. (e.g., Category 1 water can deteriorate to Category 2 water)
Class of water damage is determined by the potential rate of evaporation based on the type of materials affected by water. For example, carpet pad that is saturated will have a greater potential evaporation rate due to its porosity that a hard wood floor that is saturated with water.
Determing the class of a water loss will help determine how much drying equipment such as air movers and dehumidifiers are required to efficiently dry the structural components.
Class 1 — (least amount of water absorption and evaporation load): Water intrusion where wet, porous materials (e.g., carpet, gypsum board, fiber-fill insulation, concrete masonry unit (CMU), textiles) represent less than ~5% of the combined floor, wall and ceiling surface area in the space; and where materials described as low evaporation materials or assemblies have absorbed minimal moisture (see definitions for Class 4 and low evaporation assemblies).
Class 2 — (significant amount of water absorption and evaporation load): water intrusion where wet, porous materials (e.g., carpet, gypsum board, fiber-fill insulation, concrete masonry unit (CMU), textiles) represent ~5% to ~40% of the combined floor, wall and ceiling surface area in the space; and where materials described as low evaporation materials or assemblies have absorbed minimal moisture (see definitions for Class 4 and low evaporation assemblies).
Class 3 — (greatest amount of water absorption and evaporation load): water intrusion where wet, porous materials (e.g., carpet, gypsum board, fiber-fill insulation, concrete masonry unit (CMU), textiles) represent more than ~40% of the combined floor, wall and ceiling surface area in the space; and where materials described as low evaporation materials or assemblies have absorbed minimal moisture (see definitions for Class 4 and low evaporation assemblies).
Class 4 — (deeply held or bound water): water intrusion that involves a significant amount of water absorption into low evaporation materials (e.g., plaster, wood, concrete, masonry) or low evaporation assemblies (e.g., multilayer wallboard, multilayer subfloors, gym floors, or other complex, built-up assemblies). Drying may require special methods, longer drying times, or substantial water vapor pressure differentials.
Water damage restoration can be performed by property management teams, building maintenance personnel, or by the homeowners themselves; however, contacting a certified professional water damage restoration specialist is often regarded as the safest way to restore water damaged property. Certified professional water damage restoration specialists utilize psychrometrics to monitor the drying process.[6]
While there are currently no government regulations in the United States dictating procedures, The Institute of Inspection Cleaning and Restoration Certification (IICRC)[7] is the industry standards and certifying body. The current IICRC standard is ANSI/IICRC S500-2021.[8] It is the collaborative work of the IICRC, SCRT, IEI, IAQA, and NADCA.
The IICRC Water Restoration Certification (WRT)[9] teaches students the industry standard, technical drying concepts, categories and classes of water damage, equipment use, and moisutre identification. After students complete and IICRC course, they can become certified after passing an exam. The IICRC does not operate or hold classes, reather, they have IICRC approved schools[10] who teach certification classes. After completing the course and passing the exam, the IICRC issues students a certification.
Water Restoration companies are regulated by the appropriate state's Department of Consumer Affairs - usually the state contractors license board. While there are generally no contractors license classifications for water damage restoration, the work performed during a restoration project is often covered in adjacent license classifications.
When consumers or businesses hire water restoration companies, they should ensure they are a reputable company by checking reviews, verifying any applicable contractors licenses, IICRC certifications, if they are an IICRC Certified Firm,[11] and appropriate business insurance.
Water damage restoration is often prefaced by a loss assessment and evaluation of affected materials. The damaged area is inspected with water sensing equipment such as probes and other infrared tools in order to determine the source of the damage and possible extent of areas affected. Emergency mitigation services are the first order of business. Controlling the source of water, removal of non-salvageable materials, water extraction and pre-cleaning of impacted materials are all part of the mitigation process. Restoration services would then be rendered to the property in order to dry the structure, stabilize building materials, sanitize any affected or cross-contaminated areas, and deodorize all affected areas and materials. After the labor is completed, water damage equipment including air movers, air scrubbers, dehumidifiers, wood floor drying systems, and sub-floor drying equipment is left in the residence. The goal of the drying process is to stabilize the moisture content of impacted materials below 15%, the generally accepted threshold for microbial amplification. Industry standards state that drying vendors should return at regular time intervals, preferably every twenty-four hours, to monitor the equipment, temperature, humidity, and moisture content of the affected walls and contents.[6] In conclusion, key aspects of water damage restoration include fast action, adequate equipment, moisture measurements, and structural drying. Dehumidification is especially crucial for structural components affected by water damage, such as wooden beams, flooring, and drywall.